Why Classical Models for Pattern Recognition Are Not Pattern Recognition Models

نویسنده

  • Lev Goldfarb
چکیده

In this paper we outline a simple explanation of why, we think, the classical, or vector-space-based (including the artificial neural net) models for pattern recognition are fundamentally inadequate as such. The present simple explanation of this inadequacy is based on a radically new understanding of the nature of inductive learning processes. The latter became possible only after a careful analysis of the axiomatic foundations of a new inductive learning model proposed by the first author in 1990 which overcomes the above limitations. The new model—evolving transformation system—has emerged as a result of a 13-year long attempt to find a mathematical framework that would unify the two main and structurally different approaches to pattern recognition: the vector-space-based and the syntactic approaches. The decisive deficiency of the classical vector-space-based pattern recognition models, as it turns out, relates to the intrinsic inability of the underlying mathematical model, i.e. the normed vector space, to accommodate, during the learning process in a realistic environment, the discovery of the corresponding class distance function under more general than numeric, symbolic, pattern representation. Typically, such symbolic distance functions have very little to do with a very restricted, “Euclidean”, class of distance functions, which due to the underlying algebraic structure of the vector space are unavoidably associated with this form of pattern representation. In other words, the more general class of symbolic distance functions is incomparably larger than that consistent with the vector space structure, and so the discovery and construction of the appropriate class distance function during the learning process simply cannot proceed in the vector space setting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local gradient pattern - A novel feature representation for facial expression recognition

Many researchers adopt Local Binary Pattern for pattern analysis. However, the long histogram created by Local Binary Pattern is not suitable for large-scale facial database. This paper presents a simple facial pattern descriptor for facial expression recognition. Local pattern is computed based on local gradient flow from one side to another side through the center pixel in a 3x3 pixels region...

متن کامل

Transfer from action to perception: The effect of motor-perceptual enrichment

This study investigated the effect of audiovisual integration on action-perception transfer.40 subjects were randomly divided four groups: visual, visual-auditory, control visual and control visual-auditory. Visual groups watched pattern skilled basketball player and other groups in addition to watching pattern skilled basketball player, heard Elbow angular velocity as sonification. In first st...

متن کامل

Steel Consumption Forecasting Using Nonlinear Pattern Recognition Model Based on Self-Organizing Maps

Steel consumption is a critical factor affecting pricing decisions and a key element to achieve sustainable industrial development. Forecasting future trends of steel consumption based on analysis of nonlinear patterns using artificial intelligence (AI) techniques is the main purpose of this paper. Because there are several features affecting target variable which make the analysis of relations...

متن کامل

A New Statistical Approach for Recognizing and Classifying Patterns of Control Charts (RESEARCH NOTE)

Control chart pattern (CCP) recognition techniques are widely used to identify the potential process problems in modern industries. Recently, artificial neural network (ANN) –based techniques are very popular to recognize CCPs. However, finding the suitable architecture of an ANN-based CCP recognizer and its training process are time consuming and tedious. In addition, because of the black box ...

متن کامل

Universty Intellectual Capitals, A base for organizing academic planning

Today, the creation and management of knowledge assets play a decisive role in maintaining the viability and value creation of universities. However, it seems still no agreement has been formed on the most fundamental knowledge assets that generally are intangible. The existing understandings of knowledge assets of universities which are generally partial, personal and not tested, have failed t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013